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Abstract

Fairness is a rapidly growing area of concern in machine learning literature, with many arguing
for algorithms to consider possible biases based on sensitive attributes (such as gender, race,
nationality, etc.) when designing algorithms that could affect important decisions. One subfield
of this literature seeks to develop penalties for unfairness as part of the objective functions of
learning methods, such that model creators can control the tradeoff of optimizing accuracy versus
maintaining group fairness. In this paper, we extend previous methods by Bechavod and Ligett
(2018) to create convex penalties for fairness metrics that can be added to logistic regression in
order to create more fair models. We develop a penalty to incentivize demographic parity which
is able to significantly reduce disparities in a test set while preserving accuracy. We also develop
a penalty that allows us to weight accuracy differently for different demographic groups, which
indeed does improve accuracy for both majority and minority groups.

1 Introduction

1.1 Motivation

As machine learning algorithms are tasked with making increasingly important decisions that can affect
people’s everyday lives, an increasing amount of focus is being given to possible concerns with fairness
and algorithmic bias in these algorithms [1, 2, 3]. Recent high-profile examples of these concerns
include ProPublica’s investigation of COMPAS, an algorithm by Northpointe for predicting recidivism
in criminal defendants, and the discovery by Obermeyer et al. (2019) of racial biases in an algorithm
for identifying high-risk medical patients in ways that would disproportionately deny Black patients
care [4, 5].

There are a wide range of strategies that are used for mitigating bias in machine learning algorithms,
and they can be split up into:

• pre-processing approaches, such as re-weighing and label flipping [6]

• in-processing approaches, which add penalizers to loss functions to incentivize algorithms towards
fairer outcomes [7]

• post-processing approaches, which alter a model’s predictions after they are made to align with
desired fairness constraints [8]

For this course, in-processing approaches are the most applicable, since they allow us to modify the
optimization problems inherent in learning techniques by designing additional terms to place in the
objective function. Performing in-processing also allows us to tune hyperparameters that weight these
different notions of fairness differently.

1.2 Previous Work

In both the philosophical sense and in the algorithmic sense, there are many varying ideas of what
”fairness” might entail, each of which capture different notions of what ideal decision-making systems
should and should not consider with respect to the individuals they make decisions on [9]. This is
true even when we restrict our focus to group fairness, where we try to remain unbiased with respect
to gender, race, and other protected attributes; there are still other notions of what it might mean to
be fair, such as individual fairness [10]. This is made even more complicated by the fact that many

1



different fairness metrics, which may each sound reasonable on their own, are mutually exclusive with
either very weak assumptions or none at all [11, 12].

There have been many previous efforts to introduce fairness to optimization problems, with a variety
of approaches. Goel et al. (2018) modify logistic regression by formulating convex terms relating to
historical bias present in the dataset, and to bias present in the classifier [13]. This approach yields
classifiers that are Pareto optimal relative to other classifiers, in that they disadvantage any individuals
only through changes that are more advantageous to others; the authors find that this method ”achieves
non-discrimination without significant loss in accuracy.”

Zafar et al. (2017) propose a convex constraint on logistic regression that penalizes the covariance
between the sensitive attributes of observations and their predicted decision from the decision boundary
[14]. The bound on this covariance becomes a tunable hyperparameter, where tightening this bound on
covariance more strictly enforces fairness but could have a worse impact on accuracy. They similarly
exhibit a significant improvement in fairness with a modest decrease in accuracy, while also showing
how the framework could be reversed to maximize fairness with accuracy constraints, as opposed to
the more common setting that does the opposite.

The paper that we most directly draw on is from Bechavod and Ligett (2018), who similarly develop
a penalizer for logistic regression based on distances from the decision boundary [15]. They derive this
as a convex relaxation of constraining the difference between the false positive rate between different
groups, which is initially a non-convex function. The penalizer they propose for false positive rate is
as follows:

With Sa,y indicating members of the dataset who are in protected group a ∈ {0, 1} and whose true
label is y ∈ {0, 1}, and with logistic regression weights θ,
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In essence, minimizing this penalizer ensures that for both values of the protected class, the members
whose true labels are negative are on average classified the same distance from the decision boundary;
this would indicate that, given a true or false label, the value of the protected attribute a does not
affect the classification of that observation. For example, if the protected attribute is sex, and our two
values are men and women, this penalizer indicates that the men whose true label is negative and the
women whose true label is negative are on average assigned the same score by the logistic regressor.

Bechavod and Ligett also make a squared version of this penalizer so that it is differentiable at 0,

RSD
FP (θ;S) =

(
θTx

)2
and make an analogous penalizer for false negatives by substituting in groups S01 and S11, indicating

true positives of both classes.
What is notable about this solution is that the operative term in the penalizer that allows us to

consider fairness, x, is pre-computable from the dataset, and therefore doesn’t require tuning in the
optimization step itself. This offers an incredibly simple framework for creating penalizers for logistic
regression that can be easily applied to other notions of fairness.

1.3 Intended Contributions

In this paper, we aim to build off of the aforementioned frameworks for penalizing unfairness in
logistic regression by developing our own simple convex penalizers that capture notions of fairness and
balance that model creators might consider desirable. First, we develop a penalizer that incentivizes
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demographic parity, which incentivizes similar classification of different demographic groups as a whole.
Second, we create a penalizer that allows us to weight correct and incorrect predictions differently for
different demographic groups, in a way that penalizes confidently incorrect predictions more highly, and
vice versa for correct predictions. Then, we implement these penalizers and tune their hyperparameters
on a real-world, canonical dataset in the fairness literature, to display their performance and impacts
on the intended fairness metrics and accuracy.

1.4 Organization of Paper

In Section 2, we describe the penalizers we have formulated, and describe why they should lead to
the intended incentives in our optimization problem. In Section 3, we formulate the full logistic
regression optimization problem with our added penalizers, and using previous results on logistic
regression, derive the dual optimization problem and KKT conditions. In Section 4, we apply this
optimization problem with different values of the penalizer to a real-world dataset. In Section 5, we
discuss our results, possible future work, and limitations of our approaches.

2 Approaches

2.1 Demographic Parity Penalizer

Demographic parity, also known as statistical parity, is a fairness metric that requires classification
results to be independent of the sensitive attribute. So, in a binary classification task with sensitive
attribute A having possible group values a and b, and for predictions Ŷ , demographic parity requires
that:

P (Ŷ = 1|A = a) = P (Ŷ = 1|A = b) [2]

As evident from this definition, this metric is agnostic to any of the actual features of the data,
and only requires all groups to be classified positive at the same rate. So, in the very likely case that
there is a correlation between the outcome and the sensitive attribute, enforcing demographic parity
is inconsistent with balancing error rate between classes, and might run counter to desired behaviors
even with a focus on fairness [11]. However, demographic parity is still a widely used statistic, and
there are certainly areas in which it might be used as an indicator of broader issues, or as a baseline
while other metrics are optimized. For example, the United States Equal Employment Opportunity
Commission (EEOC) uses an ”80% rule” that requires that the rate of classified positives for one group
is never below 80% of the rate for another group [16].

To include demographic parity as a penalizer in the optimization problem, we can modify the
squared penalizer from Bechavod and Ligett to take the average distance from the classification bound-
ary for all members of each class, and minimize the difference between them. So, for groups A ∈ a, b
and dataset S, our penalizer for demographic parity xparity = xP is as follows:
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Where x ∈ a indicates that observation x is part of protected group a, and |A = a| is the total

number of observations in group a.
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When this penalizer equals 0, this means that the average distance from the classification boundary
for members of class a and b is the same. On the one hand, this might not exactly capture demo-
graphic parity if all we care about are the resulting binary predictions, but this term might have more
utility as a optimization penalizer since it also penalizes the classifier being much more confident in
predictions for one class than another. Crucially, xparity is precomputed from the data, so despite the
somewhat complex idea we’re trying to encode in the penalizer, the term we’re ultimately adding to
the optimization problem is very simple.

2.2 Reweighting Group Differences in Accuracy

As mentioned above, another approach to balancing classification results between demographic groups
is to re-weight observations from groups differently, in such a way that weights populations that are
a minority in the training set higher; otherwise, an imbalance in the prevalence of groups in the data
would mean that the model could have a lower accuracy for less prevalent groups [6].

To construct this penalizer, we’ll first consider a single observation (x, y) in the dataset. For this
term, we’ll let y ∈ {−1, 1} instead of {0, 1} as usual. The log-odds predicted by the logistic regression
weights θ are θTx. This value will be highly negative for a confident negative prediction, highly positive
for a confident positive prediction, and near 0 for a prediction near the decision boundary. So, since
y will have the same sign as θTx if the binary prediction is correct, the term yθTx will be positive if
the prediction is correct and negative if it’s incorrect. What’s more, yθTx will be highly positive for
very confident predictions and highly negative for very unconfident predictions, so this term serves as
an effective higher-is-better metric of the model’s predictions.

We’re going to use this term as a way to reweight accuracy for different groups in our optimization
problem by choosing a parameter c ∈ (0, 1) that represents our choice of weights between the two
demographic groups. Then, we will take the average of the above yθTx term for the two groups,
multiply one by c, and the other by (1− c). So, our penalizer Rreweighting = RRW becomes:

RRW (θ;S) = c ·
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When c is between 0.5 and 1, we are treating this confidence metric as more important for group
a, and when it is below 0.5, we are treating it as more important for group b. Note that since higher
is better for this term, to use it as a penalizer in logistic regression, which is a minimization problem,
we’ll multiply xRW by −1 in practice; in the following derivations, we’ll treat xRW as if this has already
been applied.

3 Problem Statement

3.1 Primal Formulation

The primal formulation for vanilla logistic regression is as follows:

min
θ

−ll(θ;x, y)

Where −ll(θ;x, y) is the negative log-likelihood of the dataset’s labels y given logistic regression
weights θ and dataset features x, given by

∑
i − log(1 + e−yi(θ·xi)).

To create our primal optimization problem, we add on our chosen penalizers, and add a regular-
ization constraint that keeps the squared norm of the weights θ under some scalar q:
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min
θ

− ll(θ;x, y) + (θTxP )
2 + θTxRW

s.t. ||θ||22 ≤ q
(1)

(In practice, we will multiply tunable weights to our penalizers in order to vary the degree to which
they affect the optimization problem; for the simplicity of this derivation, we’ll omit these weights,
though they would not affect the actual process of the derivation.)

3.2 Deriving a Dual Formulation

However, as we’ve discovered, calculating the dual of the log-likelihood function can be quite difficult,
and often relies on numerical bounds that we cannot verify for our modification of the optimization
problem. In discussion with TA Chester in office hours, we found a procedure by which we could more
or less enumerate the dual in Keerthi et al. (2005), and we adapt our optimization problem as follows
to fit their procedure [17].

Let −ll(θ;x, y) equal
∑

i g(ξi), where g(ξ) = log(1 + eξ) and ξi = −yi(θ · xi). (Note that we are
augmenting all observation vectors xi with a leading 1 to account for an intercept parameter.) This
is, of course, an equivalent formulation of the log-likelihood as before, but it will make it easier for us
to compute the gradient with respect to θ of the Lagrangian in a few steps by removing θ from the
log-likelihood.

This allows us to reformulate the primal formulation as such:

min
θ,ξ

∑
i

g(ξi) + (θTxP )
2 + θTxRW

s.t. ||θ||22 ≤ q;

ξi = −yi(θ · xi) ∀i

(2)

Now, we can formulate the Lagrangian function, with Lagrange multipliers λ for the regularization
term, and vi for each value of ξi:

L(θ, λ, v, ξ) =
∑
i

g(ξi) + (θTxP )
2 + θTxRW + λ(||θ||22 − q) +

∑
i

vi (−ξi − yi(θ · xi)) (3)

So, the Lagrange dual becomes:

g(λ, v, ξ) = inf
θ,ξ

L(θ, λ, v, ξ) (4)

We can solve for this by finding the value of θ where ∇θL = 0, and the value of ξ where ∇ξL = 0.
It should be clear now why we chose to use Keerthi et al.’s formulation of the problem, since this will
make the calculation of ∇θL more tractable, while allowing us to cite previous work for ∇ξL = 0.

3.2.1 Solving for Gradient w.r.t. θ

We know take the derivative of L with respect to θ.

∇θL = 2(θTxP )xP + xRW + 2λθ −
∑
i

viyixi = 0 (5)

∇θL = 2(θTxP )xP + 2λθ = (
∑
i

viyixi)− xRW (6)

We cannot solve for θ outright, but we can formulate a series of d equations, one for each dimension
of x or θ. For element k of x and θ, where k ∈ {1, . . . , d}:

2(θTxP )xPk
+ 2λθk = (

∑
i

viyixik)− xRWk
(7)

2(
∑
j

θjxPj )xPk
+ 2λθk = (

∑
i

viyixik)− xRWk
(8)

Let
∑

j\k indicate the sum over all values of j (which are dimensions of x or θ) other than k:
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 (13)

While we cannot solve directly, this defines a system of d equations, in which each element of θ
is defined in terms of all the other elements. When we solve this system of equations, we get θ∗, the
value of θ for which ∇θL = 0.

3.2.2 Solving for Gradient w.r.t. ξ

When we take the gradient of L with respect to ξi, we get:

∂L

∂ξi
= g′(ξi)− vi = 0

Citing Remark 1 of Keerthi et al. (2005) – or just taking the derivative of g – we get [17]:

g′(ξi) =
eξi

1 + eξi

So, to solve for ξi such that ∇ξiL = 0:

g′(ξi) = vi

eξi

1 + eξi
= vi

eξi = vi + vie
ξi

eξi − vie
ξi = vi

eξi(1− vi) = vi

eξi =
vi

(1− vi)

ξi = log(
vi

1− vi
)
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3.2.3 Dual Problem

Finally, we can get the Lagrange dual function by substituting the values of θ and ξ such that ∇L = 0
into the Lagrangian function. Since we don’t have a closed-form solution for θ, we’ll define the optimal
solution as θ∗.

g(λ, v) =

(∑
i

g(log(
vi

1− vi
)) + (θ∗TxP )

2 + θ∗TxRW + λ(||θ∗||22 − q) +
∑
i

vi

(
− log(

vi
1− vi

)− yi(θ
∗ · xi)

))
(14)

And so, the dual problem is as follows:

max
λ,v

g(λ, v)

s.t. λ ∈ R+

v ∈ Rd

(15)

3.3 KKT Conditions

The KKT conditions for the solution are as follows:
Primal Constraints:

||θ||22 − q ≤ 0

ξi + yi(θ · xi) = 0 ∀i

Dual Constraints:

λ ∈ R+, v ∈ Rd

Complementary Slackness:

λ(||θ||22 − q) = 0

Gradient/Stationarity:

∇θ,ξ

(∑
i

g(ξi) + (θTxP )
2 + θTxRW

)
+ λ∇θ,ξ(||θ||22 − q) +

∑
i

vi∇θ,ξ (ξi + yi(θ · xi)) = 0

4 Results

To test our approach, we applied our data to an incredibly popular, canonical dataset in the machine
learning space, used in many of the pre-cited papers, the ”Adult” Census dataset [18]. The Adult
dataset is derived from 1994 data from the US Census Bureau, and includes information about a
respondent’s employment, education, race, and more. The binary attribute we try to predict is whether
or not the respondent’s income is above or below $50,000, and the protected demographic attribute is
the respondent’s gender. In our analysis, this dataset has 46,033 observations, each with 46 attributes,
most of which are one-hot encoded from categorical selections in the dataset.

For the purposes of our analysis, we use a 30/70 train-test split, replicating the one used by
Bechavod and Ligett, and run the above optimization problem using the convex optimization package
CVXPY [19, 20]. We use similar settings for CVXPY as Bechavod and Ligett, limiting the ECOS
solver to 1000 iterations, and we handle any possible solver errors by using the SCS solver as a backup
for 1500 iterations. Throughout the following results, we set the regularization parameter q = 1,
meaning that the squared L2 norm of weights ||θ||22 = 1. In addition, we only run the optimizer with
one penalizer active at a time (to reduce the computational costs of a full grid search).

7



Figure 1: Effect of Parity Penalizer on Logistic Regression Test Results

Parity Weight Avg. Prediction for Men Avg. Prediction for Women Difference in Average Prediction Total Accuracy

0 0.1519 0.0527 0.0992 0.7959

100 0.1173 0.1083 0.0090 0.7852

200 0.1137 0.0876 0.0261 0.7938

400 0.1016 0.0700 0.0316 0.8040

600 0.1098 0.0788 0.0310 0.7983

800 0.1132 0.0865 0.0267 0.7944

1000 0.1149 0.0924 0.0225 0.7908

Table 1: Results for Parity Penalizer on Average Predictions by Sex

4.1 Parity Penalizer

As can be seen in the above figure and table, introducing xparity, which penalizes differences in the
proportion of predicted positives between men and women, does indeed seem to have the intended
effect in practice. When the penalizer is not in effect at all, with weight = 0, 15.19% of men in the
test set are predicted as positives (in this case, as having an income above $50,000), but only 5.27%
of the women are predicted as positives.

When we instead have a weight of 100 (meaning we multiply
(
θTxP

)2
by 100 in the optimization

problem), then we predict 11.73% of men and 10.83% of women as positives, bringing us much closer
to our penalizer’s goal of demographic parity. The difference in average prediction goes from 9.92% to
0.9%, an 11-fold improvement. This behavior is similar for larger values of the penalizer. (The reason
that the parity difference does not monotonically go down as the weight is increased is because we’re
evaluating this penalizer on the test set, not the training set.)

We can also observe from the above table that the initial improvement in demographic parity
is accompanied by a modest, if not negligible change in total classifier accuracy. Indeed, for parity
weight = 400, we are able to lower parity significantly from the unpenalized classifier while having
higher accuracy.

8



Figure 2: Effect of Reweighting Penalizer: Each plot represents a different weight of the penalizer, and
in each one, we vary the relative importance given to male and female accuracy when optimizing on
the training set.

Penalizer Weight Relative Female Weight Male Accuracy Female Accuracy Penalizer Weight Relative Female Weight Male Accuracy Female Accuracy

1600 0 0.7425 0.8988 2400 0 0.7307 0.8703

0.25 0.7455 0.9029 0.25 0.7392 0.8904

0.5 0.7477 0.9061 0.5 0.7446 0.9017

0.75 0.7499 0.9085 0.75 0.7479 0.907

1 0.751 0.9101 1 0.7505 0.9094

2000 0 0.7381 0.8876 2800 0 0.7304 0.8707

0.25 0.7427 0.8995 0.25 0.7301 0.8711

0.5 0.7462 0.9041 0.5 0.742 0.8985

0.75 0.749 0.9082 0.75 0.7467 0.9051

1 0.7508 0.91 1 0.7503 0.9089

Table 2: Accuracy of Classifier by Sex for Different Penalizer Weights and Reweightings

4.2 Accuracy Re-weighting

In the above figure and table, we report the results of applying our penalizer that assigns a penalty
to incorrect predictions corresponding to prediction confidence, reweighted by the sensitive attribute.
Specifically, for different weights (1600, 2000, 2400, and 2800), which control the strength of the
penalizer, we ran the optimization problem with a different set of relative weights for men and women
(0, 0.25, 0.5, 0.75, and 1), and collected the resulting accuracy for each men and women on the test
set.

We find, as expected, modest improvements in accuracy for women as we increase the penalizer’s
relative weight for female observations, with improvements in accuracy of around 3% from the case in
which we penalize inaccuracy only in men to the case in which we penalize inaccuracy only in women.

However, as the above graphs make clear, we also yield the unexpected result that the accuracy
for men also increases as we increase the relative weight of observations for women, across all four of
the above penalizer weights. This is the opposite of what we might expect. Remember that we are
evaluating these results on a test set, not the training set for the optimizer. So one reason for this
result might be that since women are a minority in the dataset, reweighting their observations might
actually be making our classifier more robust in general, and so we are preventing overfitting in the
data to the existing male observations. Since reweighting is already an existing strategy for reducing
overfitting in classifiers in general, by creating a model that reweights a minority population in our
dataset, we may have unwittingly replicated that in our own models [21].

5 Discussion

Above, we showed that the effect of our penalizers on a logistic regression optimization problem trained
on a real-world, canonical dataset from the machine learning fairness space. Our demographic parity
penalizer achieves a large reduction in disparities in average prediction between men and women on the
test set, with little to no reduction in classification accuracy. Our penalizer for reweighting accuracy
by sex, although it did not act exactly how we expected, managed to improve accuracy for both men
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and women, possibly through the unintended but positive effects of using reweighting to prioritize
observations of minority groups.

5.1 Limitations

There are, obviously, some limitations to the approaches we use here. The most obvious is that, like
loss functions for classifiers themselves, our fairness penalties are subject to overfitting. This is because
they are computed entirely based on the observed averages within demographic groups in the training
set, and so if the test data differs from these observed patterns, then our penalizers are no longer
achieving their stated goals.

At the same time, though, our penalizers are no more subject to overfitting than are any learned
model from a training set. Whenever we learn a model on a training set, we assume that the distribution
of observations in our training set more or less matches that in the test set and in practice; by that
same assumption, the marginal distributions of the other features for different values of the protected
group should also remain similar, so our penalizers should still have the desired effect.

Another issue is that our penalizers add significant complexity to the logistic regression problem,
by requiring their own hyperparameter tuning for the penalizer weight (and in the example of the
accuracy-reweighting penalizer, there’s an additional parameter that can vary).

5.2 Future Work

As we’ve alluded to above, there are still a great number more fairness metrics that different model
creators might value, and many of them likely have their own corresponding penalties that could be
applied to logistic regression to improve fairness on those metrics. The relaxation method proposed
by Bechavod and Ligett is quite powerful, in that as long as we can factor out the logistic regression
weights from the penalizer, we can insert the penalizer as a simple linear term in the objective function.

Another avenue for future work directly from our paper would be to prove whether optimizing our
penalizer truly is equivalent to optimizing demographic parity or re-weighted accuracy. Bechavod and
Ligett develop their penalizers based on statistical guarantees given in Woodworth et al. (2017) that
prove that minimizing their penalizers for false positive rate and false negative rate do indeed yield
their desired fairness metrics on datasets drawn from the same distribution as the training set [22].
However, we did not derive or discover any similar guarantees for our penalizers, which are simply
based on our intuitions of how these terms might work. If it is possible to prove that our penalizers
do indeed guarantee fairness on some metrics when optimized, this would give us a much stronger
guarantee that they will perform as intended when properly tuned.
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